Accepted Manuscript

Efficacy and safety of nebulized morphine given at two different doses compared to intravenous titrated morphine in trauma pain

Mohamed Habib Grissa MD, Hamdi Boubaker MD, Asma Zorgati MD, Kaouthar Beltaïef MD, Wafa Zhani MD, Mohamed Amine Msolli MD, Nasri Bzeouich MD, Wahid Bouïda MD, Riadh Boukef MD, Semir Nouira MD

PII: S0735-6757(15)00486-6
DOI: doi: 10.1016/j.ajem.2015.06.014
Reference: YAJEM 55064

Received date: 22 January 2015
Revised date: 4 June 2015
Accepted date: 4 June 2015

Please cite this article as: Grissa Mohamed Habib, Boubaker Hamdi, Zorgati Asma, Beltaïef Kaouthar, Zhani Wafa, Msolli Mohamed Amine, Bzeouich Nasri, Bouïda Wahid, Boukef Riadh, Nouira Semir, Efficacy and safety of nebulized morphine given at two different doses compared to intravenous titrated morphine in trauma pain, American Journal of Emergency Medicine (2015), doi: 10.1016/j.ajem.2015.06.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Efficacy and safety of nebulized morphine given at two different doses compared to intravenous titrated morphine in trauma pain

Mohamed Habib Grissa, MD1,3, Hamdi Boubaker, MD1,3, Asma Zorgati, MD2, Kaouthar Beltaïef, MD1,3, Wafa Zhanı, MD1, Mohamed Amine Msolli, MD1, Nasri Bzeouich, MD1, Wahid Bouida, MD1,3, Riadh Boukef, MD2,3, Semir Nouira, MD1,3

1Emergency Department, Fattouma Bourguiba University Hospital Monastir, Tunisia.
2Emergency Department, Sahloul University Hospital, Sousse, Tunisia.
3Research Laboratory (LR12SP18) University of Monastir Tunisia

Short running title: Nebulized morphine in post trauma pain

Keywords: analgesia, trauma, nebulized morphine, intravenous morphine, randomized controlled trial, emergency department.

Conflict of interest: None

Corresponding author
Prof. Semir Nouira
semir.nouira@rms.tn

Emergency Department, Fattouma Bourguiba University Hospital Monastir, Tunisia
Research Laboratory (LR12SP18) University of Monastir Tunisia
Phone: +21698677343 Fax: +21673460678
Abstract

Background: Our aim was to compare the efficacy and safety of intravenous (IV) titrated morphine with nebulized morphine given at two different doses in severe traumatic pain.

Methods: In a prospective, randomized, controlled double blind study, we included 300 patients with severe traumatic pain. They were assigned to three groups: Neb10 group received 1 nebulization of 10 mg morphine, Neb20 group received 1 nebulization of 20 mg morphine, repeated every 10 minutes with a maximum of three nebulizations. The IV morphine group received 2 mg IV morphine repeated every 5 minutes until pain relief. Visual analog scale (VAS) was monitored at baseline, 5, 10, 15, 20, 25, 30 and 60 minutes after the start of drug administration. Treatment success was defined by the percentage of patients in whom VAS decreased more than ≥50% of its baseline value. When this end point was not reached rescue morphine was administered. Pain resolution time was defined by the elapsed time between the start of the protocol and the reach of treatment success criteria.

Results: Success rate was significantly better 97% (95% CI 93-100) for Neb20 group compared to Neb10 group [81% (95% CI 73-89)] and IV morphine group [79% (95% CI 67-84)]. The lowest resolution time was observed in Neb20 group [20 min (95% CI 18-21)]. Side effects were minor and significantly lower in both nebulization groups compared to IV morphine group.

Conclusions: Nebulized morphine using boluses of 10 mg has similar efficacy and better safety than IV titrated morphine in patients with severe post traumatic pain. Increasing nebulized boluses to 20 mg increases the effectiveness without increasing side effects.

Clinicaltrials.gov ID: NCT02200185.
Introduction

Pain is a common cause of emergency department visits. Its control remains a challenge and health priority worldwide.[1] Several international recommendations[2,3] have been developed to optimize analgesic treatment in particular in busy and crowding care settings like emergency department (ED).[4-6] However, poor quality of care in patients with severe pain is frequent and there are still barriers to prescribing opioids prescription in the ED.[7,8] The major factors precluding the optimal use of opioids in the treatment of severe pain are the fear of serious side effects and the necessity to have an IV access requiring an additional nursing availability and workload.[9-11] With the emergence of easier and potentially safer methods of morphine administration such as inhalation and nebulization, the approach to analgesia in the emergency room may improve the willingness of ED nurses and physicians to use opioid analgesics.[12-16] It has been demonstrated in some studies[14,15,17] that nebulized morphine has the same efficiency as intravenous route in the treatment of acute pain. However, this issue has not been fully documented in adult patients.[13,16,17] In addition, the optimal dose of morphine via nebulization is unknown. Considering that analgesic effect of nebulized morphine could result both from systemic and local effect, it could be expected that increasing the dose of morphine by nebulization route would increase the magnitude of analgesia without increasing side effects rate.

The purpose of our study was to evaluate the efficacy and safety of nebulized morphine using two different doses compared to intravenous morphine in management of post-traumatic acute pain in adult ED patients.
Methods

Patients

This is a prospective, randomized, controlled double blind study performed between April 2012 and March 2014 at Fattouma Bourguiba university hospital (Monastir-Tunisia) which is a large tertiary care hospital with approximately 110 000 ED patient visits per year. Patients were screened for inclusion except during the night shift and weekend. We included in this study patients older than 18 years admitted to the ED for severe acute pain after a recent trauma (within less than 12 hours). Severe pain is defined by a visual analog scale (VAS) ≥70 on a scale from 0 to 100 (none to worst pain). Exclusion criteria included known allergy to morphine, nausea or vomiting at admission, Glasgow coma scale<15, inability of the patient to cooperate (alcohol consumption or abnormal mental status), hypotension with systolic blood pressure<110 mmHg, bradypnea<12 breaths/min, $\text{SaO}_2<95\%$ while breathing room air, facial trauma, presence of rhinitis, nasal obstruction or allergy to opioids. We also excluded all patients who received analgesics within 6 hours before ED admission. Of note, in usual practice most of our trauma patients do not receive analgesia prior to the ED visit. The protocol was approved by the ethics committee of our institution.

Protocol

After inclusion and obtaining written patient informed consent, randomization was performed using computerized random number generation and sealed envelopes prior to the start of enrollment in the study. Patients were assigned to three groups: the Neb10 group including patients who received one nebulization of 10 mg (1ml) morphine (Lab Renaudin France) diluted in 4ml of normal saline associated with intravenous bolus of 5ml normal saline (placebo); the Neb20 group including patients
who received one nebulization of 20 mg morphine (2ml) diluted in 3 ml of normal saline and intravenous bolus of 5 ml normal saline as in the first group; and the IV morphine group including patients who received a bolus of 2mg of intravenous morphine (0.2ml) diluted in 4.8ml of normal saline associated with one nebulization of 5ml normal saline (placebo). Protocol treatments (morphine or placebo) were repeated every 5 minutes for IV route and every 10 minutes for nebulization route until reaching the endpoint of the protocol. Each nebulization was performed with a compressed air nebulizer (CPS 23, SYSTEM® Villeneuve-Sur-Lot France) using 8L/min of airflow during approximately 10 minutes. The pharmacist was responsible for preparation and dispensing the study drug. The investigators, the treating physicians, the nurses, and the patients were blinded to the treatment. No medication that might alter the pain sensorium and/or mental status of the patient were allowed to be administered during the study period. For all patients included in the study, demographic data and clinical characteristics were collected and stored on a standard clinical record form. Demographic data included age, sex, comorbidity, injury severity score, and time between injury and randomization. Clinical data included intensity of pain estimated by visual analogic scale (VAS), cause of trauma, systolic and diastolic blood pressure, heart rate, respiratory rate, oxygen blood saturation (SaO$_2$), and diagnosis at ED discharge. The same investigator performed each assessment. When the patients had difficulties in understanding how to read the VAS, they were allowed to use a numerical rating scale (from 0 to 100). The following parameters: VAS, blood pressure, heart rate, respiratory rate and SaO$_2$ were measured at baseline, 5, 10, 15, 20, 25, 30, and at 60 minutes after the start of protocol treatments. Occurrence of side effects such as hypotension, somnolence, decrease in respiratory rate (<12 cycles/min), allergic reactions, vomiting, nausea,
and dizziness, was monitored during all the protocol period. Patients were specifically queried about all of these potential side effects. Primary end point included the treatment success rate and pain resolution time. Treatment success rate was defined by the percentage of patients in whom the decrease in VAS was greater than or equal to 50% of its baseline value. Pain resolution time was defined by the elapsed time between the start of the protocol and the decrease of baseline VAS by at least 50%. In case of treatment failure was defined as the inability of the protocol treatment to reduce baseline VAS by at least 50% within the protocol period rescue IV morphine was allowed to be administered. Side effects were continuously monitored during the protocol and immediate discontinuation of the protocol treatment was decided in case of occurrence of serious side effects. Serious side effects included respiratory depression, oxygen desaturation as less than 95%, significant hypotension defined by a decrease of baseline arterial pressure by more than 20%, and consciousness disturbance defined by a Glasgow coma scale <15. Naloxone was immediately available. At the end of the protocol, patients received the care required by the nature of their injury according to the decision of their treating physicians.

Data Analysis

Variables are expressed as mean and standard deviation, median and 25% to 75% interquartile range or 95% confidence interval (CI) as appropriate. Comparisons were made among continuous variables using analysis of variance (ANOVA) for independent samples. Chi-square or the Fisher exact test was used for discrete variables. Comparison between the three groups was examined using Kruskal-Wallis test. A sample size of 100 per treatment group was calculated to detect a difference
of at least 13% in the VAS with 90% power and α level of 0.05. All tests were two-tailed and a p value less than 0.05 was considered statistically significant. Calculations were performed with a software package for windows (SPSS Inc, version 18, Chicago, IL).

Results

During the study period, 330 patients with post-traumatic pain were screened but 300 patients were finally included: 97 in Neb10 group, 100 in Neb20 group, and 103 in IV morphine. Thirteen patients were withdrawn from Neb10 group, 7 from Neb20 group, and 10 from IV morphine group (Figure 1). At baseline, the three study groups were comparable in terms of demographic characteristics, previous medical history, injury severity score, and clinical presentation at admission including VAS, blood pressure, heart rate, respiratory rate and SaO₂ (Table 1).

Success rate was not significantly different between Neb10 group, and IV morphine group [81%(95%CI 73-89) vs. 79%(95%CI 75-83)]. Success rate was 97%(95%CI 93-100) in Neb20 group and the difference was statistically significant compared with the other groups (p<0.01). Resolution time was similar between Neb10 group and IV morphine group [26min (95%CI 21-31)] and 28min(95%CI 24-32)respectively]. The lowest resolution time was observed in Neb20 group [20min(95%CI 18-22)]; the difference was statistically significant compared with the other groups (p<0.01) (Table 2). The maximal absolute decrease of VAS was highest in Neb20 group [60(95%CI 57-63)] compared with Neb10 group [50(95%CI 44-56)] and IV morphine group [46(95%CI 40-52)]. The VAS change from baseline at each time point in the three groups is shown in figure 2. There was a significant decrease in the VAS at all-time points in the three groups. From the 5-minutes time point, the Neb20 group had a
significant larger decrease in pain compared to the other groups. This difference persisted during all the protocol period. In IV morphine group the mean total dose of morphine administered was 11.4mg (95%CI 8.4-14.4) for IV morphine group and the median number of boluses required was 4(95%CI 3-5) ranging from 1 to 6 boluses (Figure 3). The mean total dose of nebulized morphine was 21.2mg(95%CI 17.1-25.3) for Neb10 group, and 36.5mg(95%CI 25.9-47.1) for Neb20 group. The median number of nebulizations was 2(95%CI 2-3) for Neb10 group and 1 (95% CI 1-2) in Neb20 group. Rescue dose of morphine was required in 5, 2, and 2 patients respectively in Neb10, Neb20 and IV morphine groups. Change of blood pressure, heart rate, respiratory rate and SaO₂ was not significant in the three groups. Overall, 29 patients (9.7%) experienced minor side effects: 19 (18.4%) in the IV morphine group, 5 (5.1%) in Neb10 group and 5 (5%) in Neb20 group; the difference was significant between the IV group and both nebulization groups (Table 3). The most frequent side effect was dizziness (55%). No major side effect was recorded during the study protocol.

Discussion

Our study demonstrated that in patients with severe post trauma acute pain, nebulized morphine with bolus doses of 10mg was as potent as intravenous titrated morphine and that the protocol using repeated bolus doses of 20mg of nebulized morphine was superior to the protocol using 10mg. In addition, time resolution of pain was the shortest with boluses of 20mg compared with 10mg of nebulized morphine and IV titrated morphine. There were a fewer patients with side effects in both nebulized groups compared with IV morphine group.

Suboptimal pain management in EDs is known to be common. Large studies conducted in ED patients with moderate-to-severe pain, demonstrated that nearly the
half received analgesics, and the same proportion reported that their pain had not been relieved at discharge from the ED.[9] It is now well proven that inadequate treatment of acute pain increases the risk of acute complications and developing chronic pain which negatively impacts quality of life.[1] Furthermore, quality of pain treatment is one of the main factors influencing patient satisfaction in the ED.[18,19] Systemic administration of opioid analgesics such as intravenous morphine are commonly prescribed in the ED to relieve severe pain.[8,20] However, side effects can impede their use and their clinical effectiveness[21,22] even though there is a trend of an increase in opioid prescribing in ED, it is still insufficient.[7,8] Alternative analgesic methods with a better efficacy/tolerance ratio have the potential to improve this situation. Pulmonary route of delivery was proposed as one of these methods.[23,24] Most available studies used inhaled or intranasal opioids either as a pre-induction anesthesia or as post-surgery analgesia but less often in the ED.[25-30] In our study, we used nebulization as this method allows provision of great amount of drug and would provide simple and available analgesia without the need for IV access.[26-30] It was demonstrated that this route of opioids administration was as efficient as conventional IV delivery.[13,15,31-32] It was notably demonstrated that onset and duration of analgesic morphine effects were similar between intravenous administration and inhalation delivery. However, comparison of nebulization and IV administration of morphine was rarely performed except in few pediatric studies.[14,15] In adults, Fulda et al.[13] compared nebulized morphine and patient-controlled IV morphine to relieve severe posttraumatic pain. They demonstrated that both treatments provided equivalent efficacy with less sedative effects in patients treated with nebulization. The same findings were reported in the study of Nejmi et al.[16] in patients with thoracic trauma comparing nebulized
morphine with epidural bupivacaine-fentanyl analgesia. More recently, Farahmand et al[17] designed a study to compare the effectiveness of nebulized fentanyl with IV morphine in 90 ED patients with moderate to severe acute limb pain. They found that both protocols provided similar rate of success and tolerance. These results are in agreement with our findings, but the new information provided by the present study is that the degree of analgesia obtained with nebulized morphine is dose dependent as increasing the unitary dose of morphine from 10 to 20mg led to a better relief of pain in our patients. We can even suggest that a bolus of 20 mg of nebulized morphine is optimal and that there is no need to further increase the initial dose as analgesic success was obtained in almost all the patients of Neb20 group (97%). Of note, the success rate in our IV titrated morphine group (79%) is similar to the usual success rates observed in the acute care literature. [33,34] The better analgesic effect of higher doses of nebulized morphine compared with IV morphine suggests that pain control with nebulization may be related more to the availability of morphine in the lung than to its concentration in the serum. Although the exact mechanism of analgesia via intrapulmonary route is still unclear, it was suggested that opioids can act directly on specific lung receptors or via anxiolytic effects after systemic absorption.[35,36] It seems unlikely that systemic effect of morphine could explain all the antalgic effect observed in our patients as it was demonstrated that systemic bioavailability of opioids via pulmonary route is quite low.[24] Although we did not measure serum morphine level in our study to assess the degree of pulmonary systemic absorption of the drug, the fact that 20mg of morphine did not induce more side effects compared with 10mg suggests that pulmonary systemic absorption of morphine in our patients was not high. There is very limited published data on the safety of nebulized opioids in the treatment of acute pain. Most of the adverse effects
described previously were minor and did not alter the care of the patients.\[17\] We confirmed these conclusions that support the good safety of morphine nebulization even when high doses are used.

Our study had some limitations that should be discussed. First, the choice of morphine dosing could favor nebulized route with regard to the different dosages used. The rationale for morphine dosing should be explained here. Previous works suggested that mean systemic bioavailability of morphine via pulmonary route ranges between 5 and 35%. If we assume that the mean bioavailability is somewhere between 10 and 20%, then, to achieve the equivalent effect of 4 mg IV morphine within 10 minutes, the nebulized dose should be between 10 and 20 mg. In addition, if we compare the total doses of morphine received in each group, we find that a 3:1 and 2:1 nebulized: IV ratio was used respectively in Neb20 and Neb10 groups which would mean that bioavailability of nebulized morphine should be more than 50% to accept that there is likely an under-dosing of IV morphine in our study. Second, although this study had a good power to detect difference in efficacy between the three treatment strategies, it could be not sufficient to detect difference regarding some rare side effects. Third, our study did not include patients younger than 18 years. However, the good efficacy/safety ratio of nebulized morphine as demonstrated in the present study is encouraging for the widespread application of this needle-free method in children. Fourth, the duration of the protocol in our study was limited to 60 minutes. It might be too short to assure a full comparison between the groups. However, in clinical practice the first hour of pain treatment in the ED is certainly the most relevant.
Conclusions

In summary, in the treatment of acute post-trauma pain, we found that nebulized morphine given at a bolus dose of 20mg, was more effective than IV titrated morphine with fewer side effects. The use of nebulized unitary dose of 10mg provided similar analgesic effect than IV morphine titration with fewer side effects. Morphine nebulization is a good substitute to IV route because this method provides a simple and rapid ED analgesia for trauma patients.
References

Figure Legends

Figure 1
Trial profile.

Figure 2
The VAS changes from baseline at each time point for the three groups: IV morphine group, Neb10 and Neb20 groups.

(*) P<0.05 between Neb20 group and Neb10 group.

(†) P < 0.05 between each time point and baseline for the three groups.

Figure 3
Distribution of patients according to number of intravenous morphine boluses. Black bar represents the median number of boluses.
Table 1. Baseline characteristics in the three treatment groups.

<table>
<thead>
<tr>
<th></th>
<th>IV Morphine (n=103)</th>
<th>Neb10 (n=97)</th>
<th>Neb20 (n=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age years (SD)</td>
<td>30(9)</td>
<td>29(8)</td>
<td>8(8)</td>
</tr>
<tr>
<td>Sex male (%)</td>
<td>74</td>
<td>72</td>
<td>8</td>
</tr>
<tr>
<td>Weight kg(SD)</td>
<td>71(17)</td>
<td>67(14)</td>
<td>7(13)</td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension (n)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes mellitus (n)</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>COPD (n)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trauma localization (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper limb</td>
<td>62</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>Lower limb</td>
<td>18</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Back</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Pelvic trauma</td>
<td>14</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Injury severity score (ISS), mean (SD)</td>
<td>5 (3)</td>
<td>5 (3)</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Vital signs at ED admission, mean(SD)

<table>
<thead>
<tr>
<th></th>
<th>Neb20 Group</th>
<th>Neb10 Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate, Beats/min</td>
<td>81(13)</td>
<td>83(17)</td>
</tr>
<tr>
<td>Systolic Blood Pressure, mmHg</td>
<td>131(18)</td>
<td>131(17)</td>
</tr>
<tr>
<td>Diastolic Blood Pressure, mmHg</td>
<td>78(14)</td>
<td>78(13)</td>
</tr>
<tr>
<td>Baseline VAS mean(SD)</td>
<td>78(11)</td>
<td>79(10)</td>
</tr>
</tbody>
</table>

VAS = Visual analog scale, **ED** = Emergency Department, **SD** = Standard deviation.

(*) p<0.01 between Neb20 group and Neb10 group. (†) p<0.01 between Neb20 group and IV Morphine group.
Table 2. Outcome of patients.

<table>
<thead>
<tr>
<th></th>
<th>IV Morphine</th>
<th>Neb10</th>
<th>Neb20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=103</td>
<td>n=97</td>
<td>n=100</td>
</tr>
<tr>
<td>Success at 60min n (%)</td>
<td>78 (79)</td>
<td>79 (81)</td>
<td>97 (97) ^t</td>
</tr>
<tr>
<td>Time resolution min, mean(SD)</td>
<td>28(17)</td>
<td>26(18)</td>
<td>20(9) ^t</td>
</tr>
<tr>
<td>VAS difference 0-60min, mean (SD)</td>
<td>46(23)</td>
<td>50(23)</td>
<td>60(14) ^t</td>
</tr>
<tr>
<td>Rescue dose of morphine n (%)</td>
<td>2(1.9)</td>
<td>5(5)</td>
<td>2 (2)</td>
</tr>
</tbody>
</table>

VAS= Visual analog scale. SD= Standard deviation.
(*) p<0.01 between Neb20 group and Neb10 group. (†) p<0.01 between Neb20 group and IV Morphine group.
Table 3. Side effects.

<table>
<thead>
<tr>
<th></th>
<th>IV Morphine n=103</th>
<th>Neb10 n=97</th>
<th>Neb20 n=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleeping</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dizziness</td>
<td>10</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nausea</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rash</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>19*</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Major (n)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^*\) P<0.05 between IV Morphine group and both nebulization groups.
Figure 1
Figure 2
Figure 3